Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

Programming Language—Common Lisp

1. Introduction

Introduction 1

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

1.1 Scope, Purpose, and History

1.1.1 Scope and Purpose

The specification set forth in this document is designed to promote the portability of Common
Lisp programs among a variety of data processing systems. It is a language specification aimed
at an audience of implementors and knowledgeable programmers. It is neither a tutorial nor an
implementation guide.

1.1.2 History

Lisp is a family of languages with a long history. Early key ideas in Lisp were developed by John
McCarthy during the 1956 Dartmouth Summer Research Project on Artificial Intelligence. Mc-
Carthy’s motivation was to develop an algebraic list processing language for artificial intelligence
work. Implementation efforts for early dialects of Lisp were undertaken on the IBM 704, the
IBM 7090, the Digital Equipment Corporation (DEC) PDP-1, the DEC PDP-6, and the PDP-10.
The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s there were
two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp.
For further information about very early Lisp dialects, see The Anatomy of Lisp or Lisp 1.5
Programmer’s Manual.

MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also
introduced the concept of functions that could take a variable number of arguments, macros,
arrays, non-local dynamic exits, fast arithmetic, the first good Lisp compiler, and an emphasis
on execution speed. By the end of the 1970’s, MacLisp was in use at over 50 sites. For further
information about Maclisp, see Maclisp Reference Manual, Revision 0 or The Revised Maclisp
Manual.

Interlisp introduced many ideas into Lisp programming environments and methodology. One of
the Interlisp ideas that influenced Common Lisp was an iteration construct implemented by War-
ren Teitelman that inspired the loop macro used both on the Lisp Machines and in MacLisp, and
now in Common Lisp. For further information about Interlisp, see Interlisp Reference Manual.

Although the first implementations of Lisp were on the IBM 704 and the IBM 7090, later work
focussed on the DEC PDP-6 and, later, PDP-10 computers, the latter being the mainstay of
Lisp and artificial intelligence work at such places as Massachusetts Institute of Technology
(MIT), Stanford University, and Carnegie Mellon University (CMU) from the mid-1960’s through
much of the 1970’s. The PDP-10 computer and its predecessor the PDP-6 computer were, by
design, especially well-suited to Lisp because they had 36-bit words and 18-bit addresses. This
architecture allowed a cons cell to be stored in one word; single instructions could extract the
car and cdr parts. The PDP-6 and PDP-10 had fast, powerful stack instructions that enabled
fast function calling. But the limitations of the PDP-10 were evident by 1973: it supported a
small number of researchers using Lisp, and the small, 18-bit address space (28 = 262,144 words)
limited the size of a single program. One response to the address space problem was the Lisp

Introduction 1-1

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

Machine, a special-purpose computer designed to run Lisp programs. The other response was to
use general-purpose computers with address spaces larger than 18 bits, such as the DEC VAX
and the S-1 Mark ITA. For further information about S-1 Common Lisp, see “S-1 Common Lisp
Implementation.”

The Lisp machine concept was developed in the late 1960’s. In the early 1970’s, Peter Deutsch,
working with Daniel Bobrow, implemented a Lisp on the Alto, a single-user minicomputer,

using microcode to interpret a byte-code implementation language. Shortly thereafter, Richard
Greenblatt began work on a different hardware and instruction set design at MIT. Although the
Alto was not a total success as a Lisp machine, a dialect of Interlisp known as Interlisp-D became
available on the D-series machines manufactured by Xerox—the Dorado, Dandelion, Dandetiger,
and Dove (or Daybreak). An upward-compatible extension of MacLisp called Lisp Machine Lisp
became available on the early MIT Lisp Machines. Commercial Lisp machines from Xerox, Lisp
Machines (LMI), and Symbolics were on the market by 1981. For further information about Lisp
Machine Lisp, see Lisp Machine Manual.

During the late 1970’s, Lisp Machine Lisp began to expand towards a much fuller language.
Sophisticated lambda lists, setf, multiple values, and structures like those in Common Lisp are
the results of early experimentation with programming styles by the Lisp Machine group. Jonl
White and others migrated these features to MacLisp. Around 1980, Scott Fahlman and others at
CMU began work on a Lisp to run on the Scientific Personal Integrated Computing Environment
(SPICE) workstation. One of the goals of the project was to design a simpler dialect than Lisp
Machine Lisp.

The Macsyma group at MIT began a project during the late 1970’s called the New Implemen-
tation of Lisp (NIL) for the VAX, which was headed by White. One of the stated goals of the
NIL project was to fix many of the historic, but annoying, problems with Lisp while retaining
significant compatibility with MacLisp. At about the same time, a research group at Stanford
University and Lawrence Livermore National Laboratory headed by Richard Gabriel began the
design of a Lisp to run on the S-1 Mark ITA supercomputer. S-1 Lisp, never completely func-
tional, was the test bed for adapting advanced compiler techniques to Lisp implementation.
Eventually the S-1 and NIL groups collaborated. For further information about the NIL project,
see “NIL—A Perspective.”

The first effort towards Lisp standardization was made in 1969, when Anthony Hearn and
Martin Griss at the University of Utah defined Standard Lisp—a subset of Lisp 1.5 and other
dialects—to transport REDUCE, a symbolic algebra system. During the 1970’s, the Utah group
implemented first a retargetable optimizing compiler for Standard Lisp, and then an extended
implementation known as Portable Standard Lisp (PSL). By the mid 1980’s, PSL ran on about
a dozen kinds of computers. For further information about Standard Lisp, see “Standard LISP
Report.”

PSL and Franz Lisp—a MacLisp-like dialect for Unix machines—were the first examples of widely
available Lisp dialects on multiple hardware platforms.

One of the most important developments in Lisp occurred during the second half of the 1970’s:
Scheme. Scheme, designed by Gerald J. Sussman and Guy L. Steele Jr., is a simple dialect of Lisp

1-2 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

whose design brought to Lisp some of the ideas from programming language semantics developed
in the 1960’s. Sussman was one of the prime innovators behind many other advances in Lisp
technology from the late 1960’s through the 1970’s. The major contributions of Scheme were
lexical scoping, lexical closures, first-class continuations, and simplified syntax (no separation of
value cells and function cells). Some of these contributions made a large impact on the design

of Common Lisp. For further information about Scheme, see IEEE Standard for the Scheme
Programming Language or “Revised® Report on the Algorithmic Language Scheme.”

In the late 1970’s object-oriented programming concepts started to make a strong impact on
Lisp. At MIT, certain ideas from Smalltalk made their way into several widely used program-
ming systems. Flavors, an object-oriented programming system with multiple inheritance, was
developed at MIT for the Lisp machine community by Howard Cannon and others. At Xerox, the
experience with Smalltalk and Knowledge Representation Language (KRL) led to the develop-
ment of Lisp Object Oriented Programming System (LOOPS) and later Common LOOPS. For
further information on Smalltalk, see Smalltalk-80: The Language and its Implementation. For
further information on Flavors, see Flavors: A Non-Hierarchical Approach to Object-Oriented
Programming.

These systems influenced the design of the Common Lisp Object System (CLOS). CLOS was
developed specifically for this standardization effort, and was separately written up in “Common
Lisp Object System Specification.” However, minor details of its design have changed slightly
since that publication, and that paper should not be taken as an authoritative reference to the
semantics of the object system as described in this document.

In 1980 Symbolics and LMI were developing Lisp Machine Lisp; stock-hardware implementation
groups were developing NIL, Franz Lisp, and PSL; Xerox was developing Interlisp; and the SPICE
project at CMU was developing a MacLisp-like dialect of Lisp called SpiceLisp.

In April 1981, after a DARPA-sponsored meeting concerning the splintered Lisp community,
Symbolics, the SPICE project, the NIL project, and the S-1 Lisp project joined together to de-
fine Common Lisp. Initially spearheaded by White and Gabriel, the driving force behind this
grassroots effort was provided by Fahlman, Daniel Weinreb, David Moon, Steele, and Gabriel.
Common Lisp was designed as a description of a family of languages. The primary influences

on Common Lisp were Lisp Machine Lisp, MacLisp, NIL, S-1 Lisp, Spice Lisp, and Scheme.
Common Lisp: The Language is a description of that design. Its semantics were intentionally un-
derspecified in places where it was felt that a tight specification would overly constrain Common
Lisp research and use. Between 1984 and 1989, Common Lisp became a de facto standard.

In 1986 X3J13 was formed as a technical working group to produce a draft for an ANSI Common
Lisp standard. Because of the acceptance of Common Lisp, the goals of this group differed from
those of the original designers. These new goals included stricter standardization for portability,
an object-oriented programming system, a condition system, iteration facilities, and a way to
handle large character sets. To accommodate those goals, a new language specification, this
document, was developed.

Introduction 1-3

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

1.2 Organization of the Document

This is a reference document, not a tutorial document. Where possible and convenient, the order
of presentation has been chosen so that the more primitive topics precede those that build upon
them; however, linear readability has not been a priority.

This document is divided into chapters by topic. Any given chapter might contain conceptual
material, dictionary entries, or both.

Defined names within the dictionary portion of a chapter are grouped in a way that brings re-
lated topics into physical proximity. Many such groupings were possible, and no deep significance
should be inferred from the particular grouping that was chosen. To see defined names grouped
alphabetically, consult the index. For a complete list of defined names, see Section 1.8 (Symbols
in the COMMON-LISP Package).

In order to compensate for the sometimes-unordered portions of this document, a glossary has
been provided; see Chapter 26 (Glossary). The glossary provides connectivity by providing easy
access to definitions of terms, and in some cases by providing examples or cross references to
additional conceptual material.

For information about notational conventions used in this document, see Section 1.4 (Definitions).
For information about conformance, see Section 1.5 (Conformance).

For information about extensions and subsets, see Section 1.6 (Language Extensions) and Section
1.7 (Language Subsets).

For information about how programs in the language are parsed by the Lisp reader, see Chapter 2
(Syntax).

For information about how programs in the language are compiled and executed, see Chapter 3
(Evaluation and Compilation).

For information about data types, see Chapter 4 (Types and Classes). Not all types and classes
are defined in this chapter; many are defined in chapter corresponding to their topic—for example,
the numeric types are defined in Chapter 12 (Numbers). For a complete list of standardized types,
see Figure 4-2.

For information about general purpose control and data flow, see Chapter 5 (Data and Control
Flow) or Chapter 6 (Iteration).

1-4 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

1.3 Referenced Publications

e The Anatomy of Lisp, John Allen, McGraw-Hill, Inc., 1978.

e The Art of Computer Programming, Volume 3, Donald E. Knuth, Addison-Wesley Company
(Reading, MA), 1973.

o The Art of the Metaobject Protocol, Kiczales et al., MIT Press (Cambridge, MA), 1991.

e “Common Lisp Object System Specification,” D. Bobrow, L. DiMichiel, R. Gabriel, S. Keene,
G. Kiczales, D. Moon, SIGPLAN Notices V23, September, 1988.

e Common Lisp: The Language, Guy L. Steele, Jr., Digital Press (Burlington, MA), 1984.

e Common Lisp: The Language, Second Edition, Guy L. Steele, Jr., Digital Press (Bedford,
MA), 1990.

e Fxceptional Situations in Lisp, Kent M. Pitman, Proceedings of the First European Confer-
ence on the Practical Application of LISP (EUROPAL ’90), Churchill College, Cambridge,
England, March 27-29, 1990.

e Flavors: A Non-Hierarchical Approach to Object-Oriented Programming, Howard 1. Cannon,
1982.

e [EEF Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, Institute of
Electrical and Electronics Engineers, Inc. (New York), 1985.

e JEEFE Standard for the Scheme Programming Language, IEEE Std 1178-1990, Institute of
Electrical and Electronic Engineers, Inc. (New York), 1991.

e Interlisp Reference Manual, Third Revision, Teitelman, Warren, et al, Xerox Palo Alto
Research Center (Palo Alto, CA), 1978.

e ISO 6937/2, Information processing—Coded character sets for text communication—Part 2:
Latin alphabetic and non-alphabetic graphic characters, ISO, 1983.

Introduction 1-5

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

e Lisp 1.5 Programmer’s Manual, John McCarthy, MIT Press (Cambridge, MA), August, 1962.

e Lisp Machine Manual, D.L. Weinreb and D.A. Moon, Artificial Intelligence Laboratory, MIT
(Cambridge, MA), July, 1981.

e Maclisp Reference Manual, Revision 0, David A. Moon, Project MAC (Laboratory for
Computer Science), MIT (Cambridge, MA), March, 1974.

e “NIL—A Perspective,” JonL. White, Macsyma User’s Conference, 1979.

e Performance and Evaluation of Lisp Programs, Richard P. Gabriel, MIT Press (Cambridge,
MA), 1985.

e “Principal Values and Branch Cuts in Complex APL,” Paul Penfield Jr., APL 81 Conference
Proceedings, ACM SIGAPL (San Francisco, September 1981), 248-256. Proceedings published
as APL Quote Quad 12, 1 (September 1981).

o The Revised Maclisp Manual, Kent M. Pitman, Technical Report 295, Laboratory for Com-
puter Science, MIT (Cambridge, MA), May 1983.

e “Revised® Report on the Algorithmic Language Scheme,” Jonathan Rees and William Clinger
(editors), SIGPLAN Notices V21, #12, December, 1986.

e “S-1 Common Lisp Implementation,” R.A. Brooks, R.P. Gabriel, and G.L. Steele, Conference
Record of the 1982 ACM Symposium on Lisp and Functional Programming, 108-113, 1982.

o Smalltalk-80: The Language and its Implementation, A. Goldberg and D. Robson, Addison-
Wesley, 1983.

e “Standard LISP Report,” J.B. Marti, A.C. Hearn, M.L. Griss, and C. Griss, SIGPLAN
Notices V14, #10, October, 1979.

o Webster’s Third New International Dictionary the English Language, Unabridged, Merriam
Webster (Springfield, MA), 1986.

1-6 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

e XP: A Common Lisp Pretty Printing System, R.C. Waters, Memo 1102a, Artificial Intelli-
gence Laboratory, MIT (Cambridge, MA), September 1989.

Introduction 1-7

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

1.4 Definitions

This section contains notational conventions and definitions of terms used in this manual.

1.4.1 Notational Conventions

The following notational conventions are used throughout this document.

1.4.1.1 Font Key

Fonts are used in this document to convey information.

name

Denotes a formal term whose meaning is defined in the Glossary. When this font is used,
the Glossary definition takes precedence over normal English usage.

Sometimes a glossary term appears subscripted, as in “whitespaces.” Such a notation
selects one particular Glossary definition out of several, in this case the second. The
subscript notation for Glossary terms is generally used where the context might be
insufficient to disambiguate among the available definitions.

name

Denotes the introduction of a formal term locally to the current text. There is still a
corresponding glossary entry, and is formally equivalent to a use of “name,” but the hope
is that making such uses conspicuous will save the reader a trip to the glossary in some
cases.

name

Denotes a symbol in the COMMON-LISP package. For information about case conventions,
see Section 1.4.1.4.1 (Case in Symbols).

name
Denotes a sample name or piece of code that a programmer might write in Common Lisp.

This font is also used for certain standardized names that are not names of external sym-
bols of the COMMON-LISP package, such as keywords, package names, and loop keywords.

name
Denotes the name of a parameter or value.

In some situations the notation “{(name)” (i.e., the same font, but with surrounding

1-8 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

“angle brackets”) is used instead in order to provide better visual separation from sur-
rounding characters. These “angle brackets” are metasyntactic, and never actually appear
in program input or output.

1.4.1.2 Modified BNF Syntax

This specification uses an extended Backus Normal Form (BNF) to describe the syntax of Com-
mon Lisp macro forms and special forms. This section discusses the syntax of BNF expressions.

1.4.1.2.1 Splicing in Modified BNF Syntax

The primary extension used is the following;:
[O]

An expression of this form appears whenever a list of elements is to be spliced into a larger
structure and the elements can appear in any order. The symbol O represents a description of the
syntax of some number of syntactic elements to be spliced; that description must be of the form

O ...|0

where each O; can be either of the form S or of the form S*. The expression [O] means that a
list of the form

(O, ...04;) 1<
is spliced into the enclosing expression, such that if n # m and 1 < n,m < j, then either
0, #0;, or O;, =0, =Qy, where for some 1 < k <n, Oy, is of the form Qp*.
For example, the expression
a1l B C]ly

means that at most one A, any number of B’s, and at most one C can occur in any order. It is a
description of any of these:

(x y)

(xBACY)

(x ABBBBBCy)
(x CBABBBY)

but not any of these:

(xBBAACCY)
(xCBCy

Introduction 1-9

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

In the first case, both A and C appear too often, and in the second case C appears too often.

1.4.1.2.2 Indirection in Modified BNF Syntax
An indirection extension is introduced in order to make this new syntax more readable:
10
If O is a non-terminal symbol, the right-hand side of its definition is substituted for the entire

expression [O. For example, the following BNF is equivalent to the BNF in the previous example:

& [10] »

O:=A|B*|C

1.4.1.2.3 Additional Uses for Indirect Definitions in Modified BNF Syntax

In some cases, an auxiliary definition in the BNF might appear to be unused within the BNF, but
might still be useful elsewhere. For example, consider the following definitions:

case keyform {|normal-clause}* [|otherwise-clause] — {result}*
ccase keyplace {|normal-clause}* — {result}*
ecase keyform {|normal-clause}* — {result}*
normal-clause::=(keys {form}*)
otherwise-clause::=({otherwise | t} {form}*)

clause::=normal-clause | otherwise-clause

Here the term “clause” might appear to be “dead” in that it is not used in the BNF. However,
the purpose of the BNF is not just to guide parsing, but also to define useful terms for reference
in the descriptive text which follows. As such, the term “clause” might appear in text that
follows, as shorthand for “normal-clause or otherwise-clause.”

1.4.1.3 Special Symbols

The special symbols described here are used as a notational convenience within this document,
and are part of neither the Common Lisp language nor its environment.

—

This indicates evaluation. For example:
(+ 45) =9

This means that the result of evaluating the form (+ 4 5) is 9.

1-10 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

3
Q
S

4

If a form returns multiple values, those values might be shown separated by spaces, line
breaks, or commas. For example:

(truncate 7 5)
— 12
(truncate 7 5)
— 1
2
(truncate 7 5)
— 1, 2

Each of the above three examples is equivalent, and specifies that (truncate 7 5) returns
two values, which are 1 and 2.

Some conforming implementations actually type an arrow (or some other indicator)
before showing return values, while others do not.

The notation “%” is used to denote one of several possible alternate results. The example

(char-name #\a)

— NIL
2% WIOWERCASE-a"
2 wSmall-A"

25 wLao1®

indicates that nil, "LOWERCASE-a", "Small-A", "LAO1" are among the possible results of
(char-name #\a)—each with equal preference. Unless explicitly specified otherwise, it
should not be assumed that the set of possible results shown is exhaustive. Formally, the
above example is equivalent to

(char-name #\a) — implementation-dependent

but it is intended to provide additional information to illustrate some of the ways in
which it is permitted for implementations to diverge.

«noty,

The notation “—" is used to denote a result which is not possible. This might be used,
for example, in order to emphasize a situation where some anticipated misconception
might lead the reader to falsely believe that the result might be possible. For example,

(function-lambda-expression

Introduction 1-11

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

(funcall #’(lambda (x) #’(lambda () x)) nil))
— NIL, true, NIL
2 (LAMBDA () X), true, NIL

not

— NIL, false, NIL

not

— (LAMBDA () X), false, NIL

This indicates code equivalence. For example:
(ged x (ged y 2z)) = (ged (ged x y) z)

This means that the results and observable side-effects of evaluating the form
(gcd x (ged y z)) are always the same as the results and observable side-effects of
(gcd (gcd x y) z) for any x, y, and z.

Common Lisp specifies input and output with respect to a non-interactive stream model.
The specific details of how interactive input and output are mapped onto that non-
interactive model are implementation-defined.

For example, conforming implementations are permitted to differ in issues of how inter-
active input is terminated. For example, the function read terminates when the final
delimiter is typed on a non-interactive stream. In some implementations, an interactive
call to read returns as soon as the final delimiter is typed, even if that delimiter is not a
newline. In other implementations, a final newline is always required. In still other im-
plementations, there might be a command which “activates” a buffer full of input without
the command itself being visible on the program’s input stream.

In the examples in this document, the notation “>” precedes lines where interactive input
and output occurs. Within such a scenario, “this notation” notates user input.

For example, the notation

(+ 1 (print (+ (sqrt (read)) (sqrt (read)))))
> 9 16
> 7

— 8

shows an interaction in which “(+ 1 (print (+ (sqrt (read)) (sqrt (read)))))” is a
form to be evaluated, “9 16 7 is interactive input, “7” is interactive output, and “8” is
the value yielded from the evaluation.

The use of the this notation is intended to disguise small differences in interactive input
and output behavior between implementations.

Sometimes, the non-interactive stream model calls for a newline. How that newline

1-12 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

character is interactively entered is an implementation-defined detail of the user interface,
but in that case, either the notation “(Newline)” or “=” might be used.

(progn (format t "“&Who? ") (read-line))
> Who? Fred, Mary, and Sally<
— "Fred, Mary, and Sally", false

1.4.1.4 Objects with Multiple Notations

Some objects in Common Lisp can be notated in more than one way. In such situations, the
choice of which notation to use is technically arbitrary, but conventions may exist which convey a
“point of view” or “sense of intent.”

1.4.1.4.1 Case in Symbols

While case is significant in the process of interning a symbol, the Lisp reader, by default, at-
tempts to canonicalize the case of a symbol prior to interning; see Section 23.1.2 (Effect of
Readtable Case on the Lisp Reader). As such, case in symbols is not, by default, significant.
Throughout this document, except as explicitly noted otherwise, the case in which a symbol ap-
pears is not significant; that is, HELLO, Hello, hElLo, and hello are all equivalent ways to denote a
symbol whose name is "HELLO".

The characters backslash and vertical-bar are used to explicitly quote the case and other parsing-
related aspects of characters. As such, the notations |hellol and \h\e\1\1l\o are equivalent ways

to refer to a symbol whose name is "hello", and which is distinct from any symbol whose name is
"HELLO".

The symbols that correspond to Common Lisp defined names have uppercase names even though
their names generally appear in lowercase in this document.

1.4.1.4.2 Numbers
Although Common Lisp provides a variety of ways for programs to manipulate the input and

output radix for rational numbers, all numbers in this document are in decimal notation unless
explicitly noted otherwise.

1.4.1.4.3 Use of the Dot Character
The dot appearing by itself in an expression such as
(iteml item2 . tail)

means that tail represents a list of objects at the end of a list. For example,

(ABC. (DEF))

Introduction 1-13

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

is notationally equivalent to:
(ABCDETPF)

Although dot is a valid constituent character in a symbol, no standardized symbols contain the
character dot, so a period that follows a reference to a symbol at the end of a sentence in this
document should always be interpreted as a period and never as part of the symbol’s name. For
example, within this document, a sentence such as “This sample sentence refers to the symbol
car.” refers to a symbol whose name is "CAR" (with three letters), and never to a four-letter
symbol "CAR."

1.4.1.4.4 NIL

nil has a variety of meanings. It is a symbol in the COMMON-LISP package with the name "NIL", it is
boolean false, it is the empty list, and it is the name of the empty type (a subtype of all types).

Within Common Lisp, nil can be notated interchangeably as either NIL or (). By convention, the
choice of notation offers a hint as to which of its many roles it is playing.

For Evaluation? Notation Typically Implied Role
Yes nil use as a boolean.

Yes ‘nil use as a symbol.

Yes 0] use as an empty list

No nil use as a symbol or boolean.
No O use as an empty list.

Figure 1-1. Notations for NIL

Within this document only, nil is also sometimes notated as false to emphasize its role as a
boolean.

For example:

(print () ;avoided

(defun three nil 3) ;avoided

’(nil nil) ;list of two symbols

(O O) ;list of empty lists

(defun three () 3) ;Emphasize empty parameter list.
(append O 20) — O ;Emphasize use of empty lists
(not nil) — ftrue ;Emphasize use as Boolean false
(get ’nil ’color) ;Emphasize use as a symbol

A function is sometimes said to “be false” or “be true” in some circumstance. Since no function
object can be the same as nil and all function objects represent true when viewed as booleans, it
would be meaningless to say that the function was literally false and uninteresting to say that it
was literally true. Instead, these phrases are just traditional alternative ways of saying that the

1-14 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

)

function “returns false” or “returns true,” respectively.

1.4.1.5 Designators
A designator is an object that denotes another object.

Where a parameter of an operator is described as a designator, the description of the operator
is written in a way that assumes that the value of the parameter is the denoted object; that is,
that the parameter is already of the denoted type. (The specific nature of the object denoted
by a “((type)) designator” or a “designator for a {(type))” can be found in the Glossary entry for
“(type)) designator.”)

For example, “nil” and “the value of *standard-output*” are operationally indistinguishable as
stream designators. Similarly, the symbol foo and the string "FOO" are operationally indistinguish-
able as string designators.

Except as otherwise noted, in a situation where the denoted object might be used multiple times,
it is implementation-dependent whether the object is coerced only once or whether the coercion
occurs each time the object must be used.

For example, mapcar receives a function designator as an argument, and its description is written
as if this were simply a function. In fact, it is implementation-dependent whether the function
designator is coerced right away or whether it is carried around internally in the form that it was
given as an argument and re-coerced each time it is needed. In most cases, conforming programs
cannot detect the distinction, but there are some pathological situations (particularly those
involving self-redefining or mutually-redefining functions) which do conform and which can detect
this difference. The following program is a conforming program, but might or might not have
portably correct results, depending on whether its correctness depends on one or the other of the
results:

(defun add-some (x)
(defun add-some (x) (+ x 2))
(+ x 1)) — ADD-SOME
(mapcar ’add-some (1 2 3 4))
— (2 34 5)
or
— (245 86)

In a few rare situations, there may be a need in a dictionary entry to refer to the object that was
the original designator for a parameter. Since naming the parameter would refer to the denoted
object, the phrase “the ((parameter-name)) designator” can be used to refer to the designator
which was the argument from which the value of ({parameter-name)) was computed.

1.4.1.6 Nonsense Words

When a word having no pre-attached semantics is required (e.g., in an example), it is common in
the Lisp community to use one of the words “foo,” “bar,” “baz,” and “quux.” For example, in

Introduction 1-15

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

(defun foo (x) (+ x 1))

the use of the name foo is just a shorthand way of saying “please substitute your favorite name
here.”

These nonsense words have gained such prevalance of usage, that it is commonplace for new-
comers to the community to begin to wonder if there is an attached semantics which they are
overlooking—there is not.

1.4.2 Error Terminology

Situations in which errors might, should, or must be signaled are described in the standard. The
wording used to describe such situations is intended to have precise meaning. The following list is
a glossary of those meanings.

Safe code

This is code processed with the safety optimization at its highest setting (3). safety is
a lexical property of code. The phrase “the function F should signal an error” means
that if F is invoked from code processed with the highest safety optimization, an error is
signaled. It is tmplementation-dependent whether F or the calling code signals the error.

Unsafe code

This is code processed with lower safety levels.

Unsafe code might do error checking. Implementations are permitted to treat all code as
safe code all the time.

An error is signaled

This means that an error is signaled in both safe and unsafe code. Conforming code

may rely on the fact that the error is signaled in both safe and unsafe code. Every
implementation is required to detect the error in both safe and unsafe code. For example,
“an error is signaled if unexport is given a symbol not accessible in the current package.”

If an explicit error type is not specified, the default is error.

An error should be signaled

This means that an error is signaled in safe code, and an error might be signaled in
unsafe code. Conforming code may rely on the fact that the error is signaled in safe code.
Every implementation is required to detect the error at least in safe code. When the error
is not signaled, the “consequences are undefined” (see below). For example, “+ should
signal an error of type type-error if any argument is not of type number.”

1-16 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

Should be prepared to signal an error

This is similar to “should be signaled” except that it does not imply that ‘extra effort’
has to be taken on the part of an operator to discover an erroneous situation if the
normal action of that operator can be performed successfully with only ‘lazy’ checking.
An implementation is always permitted to signal an error, but even in safe code, it is only
required to signal the error when failing to signal it might lead to incorrect results. In
unsafe code, the consequences are undefined.

For example, defining that “find should be prepared to signal an error of type type-error
if its second argument is not a proper list” does not imply that an error is always sig-
naled. The form

(find ’a ’(a b . ©))

must either signal an error of type type-error in safe code, else return A. In unsafe code,
the consequences are undefined. By contrast,

(find ’d ’(a b . ©))

must signal an error of type type-error in safe code. In unsafe code, the consequences are
undefined. Also,

(find ’d ’#1=(a b . #1#))

in safe code might return nil (as an implementation-defined extension), might never
return, or might signal an error of type type-error. In unsafe code, the consequences are
undefined.

Typically, the “should be prepared to signal” terminology is used in type checking
situations where there are efficiency considerations that make it impractical to detect
errors that are not relevant to the correct operation of the operator.

The consequences are unspecified

This means that the consequences are unpredictable but harmless. Implementations are
permitted to specify the consequences of this situation. No conforming code may depend
on the results or effects of this situation, and all conforming code is required to treat the
results and effects of this situation as unpredictable but harmless. For example, “if the
second argument to shared-initialize specifies a name that does not correspond to any
slots accessible in the object, the results are unspecified.”

The consequences are undefined

This means that the consequences are unpredictable. The consequences may range from
harmless to fatal. No conforming code may depend on the results or effects. Conforming
code must treat the consequences as unpredictable. In places where the words “must,”

“must not,” or “may not” are used, then “the consequences are undefined” if the stated

Introduction 1-17

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

requirement is not met and no specific consequence is explicitly stated. An implementa-
tion is permitted to signal an error in this case.

For example: “Once a name has been declared by defconstant to be constant, any
further assignment or binding of that variable has undefined consequences.”

An error might be signaled

This means that the situation has undefined consequences; however, if an error is sig-
naled, it is of the specified type. For example, “open might signal an error of type
file-error.”

The return values are unspecified

This means that only the number and nature of the return values of a form are not
specified. However, the issue of whether or not any side-effects or transfer of control
occurs is still well-specified.

A program can be well-specified even if it uses a function whose returns values are
unspecified. For example, even if the return values of some function F are unspecified, an
expression such as (length (list (F))) is still well-specified because it does not rely on
any particular aspect of the value or values returned by F.

Implementations may be extended to cover this situation

This means that the situation has undefined consequences; however, a conforming imple-
mentation is free to treat the situation in a more specific way. For example, an implemen-
tation might define that an error is signaled, or that an error should be signaled, or even
that a certain well-defined non-error behavior occurs.

No conforming code may depend on the consequences of such a situation; all conforming
code must treat the consequences of the situation as undefined. Implementations are
required to document how the situation is treated.

For example, “implementations may be extended to define other type specifiers to have a
corresponding class.”

Implementations are free to extend the syntax

This means that in this situation implementations are permitted to define unambiguous
extensions to the syntax of the form being described. No conforming code may depend
on this extension. Implementations are required to document each such extension. All
conforming code is required to treat the syntax as meaningless. The standard might
disallow certain extensions while allowing others. For example, “no implementation is free
to extend the syntax of defclass.”

1-18 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

A warning might be issued

This means that implementations are encouraged to issue a warning if the context
is appropriate (e.g., when compiling). However, a conforming implementation is not
required to issue a warning.

1.4.3 Sections Not Formally Part Of This Standard

Front matter and back matter, such as the “Table of Contents,” “Index,” “Figures,” “Credits,”
and “Appendix” are not considered formally part of this standard, so that we retain the flexibility
needed to update these sections even at the last minute without fear of needing a formal vote to
change those parts of the document. These items are quite short and very useful, however, and it
is not recommended that they be removed even in an abridged version of this document.

Within the concept sections, subsections whose names begin with the words “Notes” or “Exam-
ples” are provided for illustration purposes only, and are not considered part of the standard.

An attempt has been made to place these sections last in their parent section, so that they could
be removed without disturbing the contiguous numbering of the surrounding sections in order to
produce a document of smaller size.

Likewise, the “Examples” and “Notes” sections in a dictionary entry are not considered part of
the standard and could be removed if necessary.

Nevertheless, the examples provide important clarifications and consistency checks for the rest of
the material, and such abridging is not recommended unless absolutely unavoidable.

1.4.4 Interpreting Dictionary Entries

The dictionary entry for each defined name is partitioned into sections. Except as explicitly indi-
cated otherwise below, each section is introduced by a label identifying that section. The omission
of a section implies that the section is either not applicable, or would provide no interesting
information.

This section defines the significance of each potential section in a dictionary entry.

1.4.4.1 The “Affected By” Section of a Dictionary Entry
For an operator, anything that can affect the side effects of or values returned by the operator.

For a wvariable, anything that can affect the value of the variable including functions that bind or
assign it.

1.4.4.2 The “Arguments” Section of a Dictionary Entry

Introduction 1-19

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

This information describes the syntax information of entries such as those for declarations and
special ezpressions which are never evaluated as forms, and so do not return values.

1.4.4.3 The “Arguments and Values” Section of a Dictionary Entry

An English language description of what arguments the operator accepts and what values it
returns, including information about defaults for parameters corresponding to omittable argu-
ments (such as optional parameters and keyword parameters). For special operators and macros,
their arguments are not evaluated unless it is explicitly stated in their descriptions that they are
evaluated.

1.4.4.4 The “Binding Types Affected” Section of a Dictionary Entry

This information alerts the reader to the kinds of bindings that might potentially be affected by
a declaration. Whether in fact any particular such binding is actually affected is dependent on
additional factors as well. See the “Description” section of the declaration in question for details.

1.4.4.5 The “Class Precedence List” Section of a Dictionary Entry

This appears in the dictionary entry for a class, and contains an ordered list of the classes defined
by Common Lisp that must be in the class precedence list of this class.

Tt is permissible for other (implementation-defined) classes to appear in the implementation’s
class precedence list for the class.

It is permissible for either standard-object or structure-object to appear in the implementa-
tion’s class precedence list; for details, see Section 4.2.2 (Type Relationships).

Except as explicitly indicated otherwise somewhere in this specification, no additional standard-
1zed classes may appear in the implementation’s class precedence list.

By definition of the relationship between classes and types, the classes listed in this section are
also supertypes of the type denoted by the class.

1.4.4.6 Dictionary Entries for Type Specifiers

The atomic type specifiers are those defined names listed in Figure 4-2. Such dictionary entries
are of kind “Class,” “Condition Type,” “System Class,” or “Type.” A description of how to
interpret a symbol naming one of these types or classes as an atomic type specifier is found in the
“Description” section of such dictionary entries.

The compound type specifiers are those defined names listed in Figure 4-3. Such dictionary
entries are of kind “Class,” “System Class,” “Type,” or “Type Specifier.” A description of
how to interpret as a compound type specifier a list whose car is such a symbol is found in the

1-20 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

“Compound Type Specifier Kind,” “Compound Type Specifier Syntax,” “Compound Type
Specifier Arguments,” and “Compound Type Specifier Description” sections of such dictionary
entries.

1.4.4.6.1 The “Compound Type Specifier Kind” Section of a Dictionary Entry

An “abbreviating” type specifier is one that describes a subtype for which it is in principle possi-
ble to enumerate the elements, but for which in practice it is impractical to do so.

A “specializing” type specifier is one that describes a subtype by restricting the type of one or
more components of the type, such as element type or complex part type.

A “predicating” type specifier is one that describes a subtype containing only those objects that
satisfy a given predicate.

A “combining” type specifier is one that describes a subtype in a compositional way, using com-
bining operations (such as “and,” “or,” and “not”) on other types.

1.4.4.6.2 The “Compound Type Specifier Syntax” Section of a Dictionary Entry
This information about a type describes the syntax of a compound type specifier for that type.

Whether or not the type is acceptable as an atomic type specifier is not represented here; see
Section 1.4.4.6 (Dictionary Entries for Type Specifiers).

1.4.4.6.3 The “Compound Type Specifier Arguments” Section of a Dictionary Entry

This information describes type information for the structures defined in the “Compound Type
Specifier Syntax” section.

1.4.4.6.4 The “Compound Type Specifier Description” Section of a Dictionary Entry

This information describes the meaning of the structures defined in the “Compound Type Speci-
fier Syntax” section.

1.4.4.7 The “Constant Value” Section of a Dictionary Entry

This information describes the unchanging type and value of a constant variable.

1.4.4.8 The “Description” Section of a Dictionary Entry

A summary of the operator and all intended aspects of the operator, but does not necessarily
include all the fields referenced below it (“Side Effects,” “Exceptional Situations,” etc.)

Introduction 1-21

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

1.4.4.9 The “Examples” Section of a Dictionary Entry

Examples of use of the operator. These examples are not considered part of the standard; see
Section 1.4.3 (Sections Not Formally Part Of This Standard).

1.4.4.10 The “Exceptional Situations” Section of a Dictionary Entry
Three kinds of information may appear here:

e Situations that are detected by the function and formally signaled.
e Situations that are handled by the function.

e Situations that may be detected by the function.

This field does not include conditions that could be signaled by functions passed to and called
by this operator as arguments or through dynamic variables, nor by executing subforms of this
operator if it is a macro or special operator.

1.4.4.11 The “Initial Value” Section of a Dictionary Entry

This information describes the initial value of a dynamic variable. Since this variable might
change, see type restrictions in the “Value Type” section.

1.4.4.12 The “Method Signature” Section of a Dictionary Entry

The description of a generic function includes descriptions of the methods that are defined on
that generic function by the standard. A method signature is used to describe the parameters
and parameter specializers for each method. Methods defined for the generic function must be of
the form described by the method signature.

F (x class) (y t) &optional z &key k

This signature indicates that this method on the generic function F has two required parameters:
x, which must be a generalized instance of the class class; and y, which can be any object (i.e., a
generalized instance of the class t). In addition, there is an optional parameter z and a keyword
parameter k. This signature also indicates that this method on F is a primary method and has no
qualifiers.

For each parameter, the argument supplied must be in the intersection of the type specified in

the description of the corresponding generic function and the type given in the signature of some
method (including not only those methods defined in this specification, but also implementation-
defined or user-defined methods in situations where the definition of such methods is permitted).

1-22 Programming Language—Common Lisp

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

1.4.4.13 The “Name” Section of a Dictionary Entry

This section introduces the dictionary entry. It is not explicitly labeled. It appears preceded and
followed by a horizontal bar.

In large print at left, the defined name appears; if more than one defined name is to be described
by the entry, all such names are shown separated by commas.

In somewhat smaller italic print at right is an indication of what kind of dictionary entry this is.
Possible values are:

Accessor

This is an accessor function.

Class

This is a class.

Condition Type

This is a subtype of type condition.

Constant Variable

This is a constant variable.

Declaration

This is a declaration identifier.

Function

This is a function.

Local Function

This is a function that is defined only lexically within the scope of some other macro
form.

Local Macro

This is a macro that is defined only lexically within the scope of some other macro form.

Macro

This is a macro.

Introduction 1-23

Draft 12.24, X3J13/92-102.
Thu 9-Apr-1992 2:33am EDT

Restart

This is a restart.

Special Operator

This is a special operator.

Standard Generic Function

This is a standard generic function.

Symbol

This is a symbol that is specially recognized in some particular situation, such as the
syntax of a macro.

System Class
This is like class, but it identifies a class that is potentially a built-in class. (No class is
actuall